Difference between revisions of "Lee correlation"
From wiki.pengtools.com
												 (→Math & Physics)  | 
				 (→Math & Physics)  | 
				||
| Line 9: | Line 9: | ||
:<math> \mu_g = K\ e^{X\ \rho_g^Y} </math><ref name= Lee/>  | :<math> \mu_g = K\ e^{X\ \rho_g^Y} </math><ref name= Lee/>  | ||
where  | where  | ||
| − | :<math>  \  | + | :<math>  \rho_g =  \frac{P\ M_g}{z\ T}</math>  | 
:<math>  K = \frac{(0.00094+2\times10^-6\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math>  | :<math>  K = \frac{(0.00094+2\times10^-6\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math>  | ||
Revision as of 14:18, 2 May 2017
Brief
Lee correlation for viscosity of natural gases.
Math & Physics
where
Discussion
Why the Lee correlation?
Application range
Nomenclature
 = gas density, g/cm3
 = gas viscosity, cp
 = gas molecular weight
 = pressure, psia
 = gas specific gravity, dimensionless
 = temperature, °R
 = gas compressibility factor, dimensionless
References
- ↑ Lee, A. B.; Gonzalez, M. H.; Eakin, B. E. (1966). "The Viscosity of Natural Gases". J Pet Technol (SPE-1340-PA).
 








