Difference between revisions of "Gray correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Workflow)
Line 22: Line 22:
  
 
To find H<sub>g</sub> calculate:
 
To find H<sub>g</sub> calculate:
 +
 +
:<math> N_V = 453.592\ \frac{\rho_m_2 v_m^4}{g_c \sigma_L (\rho_L - \rho_g)}} </math><ref name= Gray/>
  
 
== Nomenclature  ==
 
== Nomenclature  ==

Revision as of 14:21, 4 April 2017

Brief

  • The boundary between the bubble and slug flow[1]

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = [\rho_g H_g + \rho_L (1-H_g)] + \rho_m \frac{f v_m^2 }{2 g_c D} + \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}[1]

where

 \rho_m = No-slip mixture density

Colebrook–White [2] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[3]

Reynolds two phase number:

 Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}

Discussion

Workflow

To find Hg calculate:

Failed to parse (syntax error): N_V = 453.592\ \frac{\rho_m_2 v_m^4}{g_c \sigma_L (\rho_L - \rho_g)}} [1]

Nomenclature

References

  1. 1.0 1.1 1.2 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API. 
  2. Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  3. Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684.