Difference between revisions of "Gray correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Math & Physics)
Line 6: Line 6:
 
== Math & Physics ==
 
== Math & Physics ==
 
Following the law of conservation of energy the basic steady state flow equation is:
 
Following the law of conservation of energy the basic steady state flow equation is:
:<math> 144 \frac{\Delta p}{\Delta h} = [H_g \rho_g + (1-H_g) \rho_L] + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}</math><ref name="Gray" />
+
:<math> 144 \frac{\Delta p}{\Delta h} = [\rho_g H_g + \rho_L (1-H_g)] + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}</math><ref name="Gray" />
  
 
== Discussion  ==
 
== Discussion  ==

Revision as of 12:10, 4 April 2017

Brief

  • The boundary between the bubble and slug flow[1]

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = [\rho_g H_g + \rho_L (1-H_g)] + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}[1]

Discussion

Nomenclature

References

  1. 1.0 1.1 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API.