Difference between revisions of "Griffith correlation"
From wiki.pengtools.com
(→References) |
(→Math & Physics) |
||
Line 8: | Line 8: | ||
The bubble flow exist when: | The bubble flow exist when: | ||
− | :<math> \frac{v_g}{v_g + v_L} < L_B </math><ref name= | + | :<math> \frac{v_g}{v_g + v_L} < L_B </math><ref name= Economides /> |
:<math> L_B = 1.071 - 0.2218 \frac{(v_g+v_L)^2}{D}</math>, with the limit <math> L_B \geqslant 0.13 </math><ref name= Orkiszewski /> | :<math> L_B = 1.071 - 0.2218 \frac{(v_g+v_L)^2}{D}</math>, with the limit <math> L_B \geqslant 0.13 </math><ref name= Orkiszewski /> |
Revision as of 16:54, 27 March 2017
Brief
The Griffith correlation [1] is an empirical correlation which defines:
- The boundary between the bubble and slug flow[2]
- The void fraction of gas in bubble flow - gas hold up Hg[2]
Math & Physics
The bubble flow exist when:
- , with the limit [2]
The gas holdup:
Discussion
Nomenclature
- = gas holdup factor, dimensionless
- = friction factor, dimensionless
- = gas-liquid ratio, scf/bbl
- = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
- = pipe diameter number number, dimensionless
- = gas velocity number, dimensionless
- = liquid viscosity number, dimensionless
- = liquid velocity number, dimensionless
- = pressure, psia
- = conversion constant equal to 32.174, lbmft / lbfsec2
- = total liquid production rate, bbl/d
- = Reynolds number, dimensionless
- = solution gas-oil ratio, scf/stb
- = specific gravity, dimensionless
- = temperature, °R or °K, follow the subscript
- = velocity, ft/sec
- = water-oil ratio, bbl/bbl
- = gas compressibility factor, dimensionless
References
- ↑ Griffith, P.; Wallis, G. B. (August 1961). "Two-Phase Slug Flow". Journal of Heat Transfer. ASME. 83: 307–320.
- ↑ 2.0 2.1 2.2 2.3 Orkiszewski, J. (June 1967). "Predicting Two-Phase Pressure Drops in Vertical Pipe". Journal of Petroleum Technology. SPE. 19 (SPE-1546-PA).
- ↑ Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D. (2013). Petroleum Production Systems (2 ed.). Westford, Massachusetts: Prentice Hall. ISBN 978-0-13-703158-0.