Difference between revisions of "Hagedorn and Brown correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Discussion)
(Discussion)
Line 23: Line 23:
 
Why [[Hagedorn and Brown]]?
 
Why [[Hagedorn and Brown]]?
  
''One of the consistently best correlations was found to be the empirical Hagedorn and Brown correlation.'' <ref = Economides\>
+
''One of the consistently best correlations was found to be the empirical Hagedorn and Brown correlation.'' <ref name=Economides />.
  
 
== Flow Diagram ==
 
== Flow Diagram ==

Revision as of 12:05, 24 March 2017

Brief

Hagedorn and Brown is an empirical two-phase flow correlation published in 1965 [1].

It doesn't distinguish between the flow regimes.

The heart of the Hagedorn and Brown method is a correlation for the liquid holdup H_L[2].

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}[1]

where

 \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)[1]

Colebrook–White [3] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[4]

Reynolds two phase number:

 Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}[1]

Discussion

Why Hagedorn and Brown?

One of the consistently best correlations was found to be the empirical Hagedorn and Brown correlation. [2].

Flow Diagram

HB Block Diagram

Workflow

To find H_L calculate:

 M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR[1]
 \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}[5]
 \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} [5]
 \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}[5]
 \sigma_L = \sigma_o \frac{1}{1 + WOR} + \sigma_w \frac{WOR}{1 + WOR}[5]
 N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}[1]
 CN_L = 0.061\ N_L^3 - 0.0929\ N_L^2 + 0.0505\ N_L + 0.0019 [2]
 v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )[5]
 v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}[5]
 N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [1]
 N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [1]
 N_{D} = 120.872\ D \sqrt{\frac{\rho_L}{\sigma_L}} [1]
 H = \frac{N_{LV}}{N_{GV}^{0.575}}\  \left ( \frac{p}{14.7} \right )^{0.1} \frac{CN_L}{N_D} [2]
 \frac{H_L}{\psi} = \sqrt{\frac{0.0047+1123.32 H + 729489.64H^2}{1+1097.1566 H + 722153.97 H^2}} [6]
 B = \frac{N_{GV} N_{LV}^{0.38}}{N_{D}^{2.14}} [2]
 \psi = \begin{cases} 
27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B <= 0.025 \\
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\
2.5714 B +1.5962, & \mbox{if }B > 0.055
\end{cases} [6]
 H_L = \frac{H_L}{\psi} \times \psi[1]

Nomenclature

References

  1. Jump up to: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits". Journal of Petroleum Technology. 17(04): 475–484. 
  2. Jump up to: 2.0 2.1 2.2 2.3 2.4 Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D. (2013). Petroleum Production Systems (2 ed.). Westford, Massachusetts: Prentice Hall. ISBN 978-0-13-703158-0. 
  3. Jump up Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  4. Jump up Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684. 
  5. Jump up to: 5.0 5.1 5.2 5.3 5.4 5.5 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5. 
  6. Jump up to: 6.0 6.1 Trina, S. (2010). An integrated horizontal and vertical flow simulation with application to wax precipitation (Master of Engineering Thesis). Canada: Memorial University of Newfoundland.