Difference between revisions of "McCain Oil Formation Volume Factor equation"

From wiki.pengtools.com
Jump to: navigation, search
(Created page with "__TOC__ == McCain Oil Formation Volume Factor correlation== McCain correlation is an empirical correlation for the '''oil...")
 
(McCain Oil Formation Volume Factor equation)
 
(25 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__TOC__
 
__TOC__
  
== McCain Oil Formation Volume Factor correlation==
+
== McCain Oil Formation Volume Factor equation==
  
[[McCain Oil Formation Volume Factor correlation|McCain correlation]] is an empirical correlation for the '''oil formation volume factor''' published in '''1990''' <ref name= M1990/>.
+
[[McCain Oil Formation Volume Factor equation|McCain equation]] is determined from material balance equation based on the definition of the '''oil formation volume factor'''<ref name= M1990/>.
  
[[File:McCain Oil density.png|thumb|right|400px|https://www.pengtools.com/pvtCalculator?paramsToken=de71e4cc29541ab2117e07408864410c|McCain oil density correlation in the PVT Software]]
+
[[File:McCain Oil Formation Volume Factor equation.png|thumb|right|400px|https://www.pengtools.com/pvtCalculator?paramsToken=de71e4cc29541ab2117e07408864410c|McCain Oil Formation Volume Factor equation in the PVT Software]]
  
 
== Math & Physics ==
 
== Math & Physics ==
  
Pseudoliquid density:
+
:<math>B_o = \frac{\rho_{STO}+1.22117\ R_s\ SG_g}{\rho_{oR}}</math><ref name=PracticalPVT/>
  
:<math>\rho_{po} = 52.8 - 0.01 R_{sb}</math>
+
== Example. Calculation of the oil formation volume factor ==
 
 
Apparent liquid density:
 
 
 
:<math>\rho_a = a_0 + a_1\ SG_{gSP} + a_2\ SG_{gSP}\ \rho_{po} + a_3\ SG_{gSP}\ \rho_{po}^2 + a_4\ \rho_{po} +a_5\ \rho_{po}^2 </math>
 
:<math>a_0 = -49.8930</math>
 
:<math>a_1 = 85.0149</math>
 
:<math>a_2 = - 3.70373</math>
 
:<math>a_3 = 0.0479818</math>
 
:<math>a_4 = 2.98914</math>
 
:<math>a_5 =- 0.0356888</math>
 
 
 
Next pseudoliquid density<ref name= M1990/>:
 
:<math>\rho_{po} = \frac{R_s\ SG_g + 4,600\ SG_o}{73.71+R_s\ SG_g\ / \rho_a}</math>
 
 
 
Iterate until pseudoliquid densities are equal.
 
 
 
Next adjust density to the pressure of interest:
 
 
 
:<math>\rho_{bs} = \rho_{po} + \triangle \rho_P </math>
 
 
 
where
 
 
 
:<math>\triangle \rho_{P} = \left ( 0.617 + 16.181 \times 10^{-0.0425\ \rho_{po}} \right) \frac{P}{1000} - 0.01 \left ( 0.299 + 263 \times 10^{-0.0603\ \rho_{po}}\right)\ \left (\frac{P}{1000}\right)^2 </math>
 
 
 
Adjust density to the temperature of interest:
 
 
 
:<math>\rho_{o} = \rho_{bs} + \triangle \rho_T </math>
 
 
 
where
 
 
 
:<math>\triangle \rho_T = (0.00302 + 1.505\ \rho_{bs}^{-0.951}) (T - 60)^{0.938} - (0.0216 - 0.0233\ (10^{-0.0161\ \rho_{bs}})) (T - 60)^{0.475}</math>
 
 
 
Oil density above the bubble point pressure:
 
 
 
:<math>\rho_{o} = \rho_{b}\ e^{c_o\ (P - P_b)} </math>
 
 
 
== Example. Calculation of the oil density ==
 
 
Example source <ref name=DW/>
 
Example source <ref name=DW/>
 
===Input data===
 
===Input data===
:<math>R_s</math> = 53.24 sm3/sm3
+
:<math>R_s</math> = 53.24 sm<sup>3</sup>/sm<sup>3</sup> at P = 10 MPa
 
:<math>SG_o</math> = 0.85 or 35 API
 
:<math>SG_o</math> = 0.85 or 35 API
 
:<math>SG_g</math> = 0.75
 
:<math>SG_g</math> = 0.75
:<math>T</math> = 90C or 363K
+
:<math>\rho_{oR}</math> = 749 kg/m<sup>3</sup> at P = 10 MPa
:<math>P</math> = 10 MPa
+
 
Calculate oil density at p = 10 MPa?
+
Calculate oil formation oil factor at p = 10 MPa?
  
 
===Solution===
 
===Solution===
:<math>\rho_o</math> = 749.645 kg/m3
+
:<math>B_o</math> = 1.199 rm<sup>3</sup>/sm<sup>3</sup>
  
 
The solution is available in the online PVT calculator software model at [https://www.pengtools.com/pvtCalculator?paramsToken=de71e4cc29541ab2117e07408864410c www.pengtools.com]
 
The solution is available in the online PVT calculator software model at [https://www.pengtools.com/pvtCalculator?paramsToken=de71e4cc29541ab2117e07408864410c www.pengtools.com]
  
 
== Application range ==
 
== Application range ==
Description of the Data Used<ref name= M1995/>:
 
  
:<math>  133 \le P_b \le 6,700 </math>
+
:<math>  2.35 \le R_s \le 322 </math>
:<math>  77 \le T \le 327 </math>
+
:<math>  0.754 \le SG_o \le 0.989 </math>
:<math>  18 \le R_{sb} \le 1,975 </math>
+
:<math>  0.555 \le SG_g \le 1.245 </math>
:<math>  0.76 \le SG_o \le 0.95 </math>
+
:<math>  21.1 \le T, C \le 160 </math>
:<math>  0.556 \le SG_g \le 1.237 </math>
 
:<math>  31.3 \le \rho_{ob} \le 55.77 </math>
 
 
 
Number of data sets = 684<BR/>
 
  
 
== Nomenclature ==
 
== Nomenclature ==
:<math> c_o </math> = oil compressibility, 1/psia
+
:<math> B_o </math> = oil formation volume factor, rm<sup>3</sup>/sm<sup>3</sup>
:<math> P </math> = pressure, psia
+
:<math> R_s </math> =  solution gas-oil ratio, sm<sup>3</sup>/sm<sup>3</sup>
:<math> R_s </math> =  solution gas-oil ratio, scf/stb
 
 
:<math> SG_g </math> = gas specific gravity, dimensionless
 
:<math> SG_g </math> = gas specific gravity, dimensionless
:<math> SG_{gSP} </math> = gas specific gravity at separator pressure, dimensionless
 
 
:<math> SG_o </math> = oil specific gravity, dimensionless
 
:<math> SG_o </math> = oil specific gravity, dimensionless
:<math> T </math> = temperature, °F
+
:<math> \rho_{oR} </math> = oil density at reservoir conditions, kg/m<sup>3</sup>
 
+
:<math> \rho_{STO} = SG_o \times 1000</math> = stock tank oil density, kg/m<sup>3</sup>
:<math> \rho_{a} </math> = apparent density of surface gas if it were a liquid, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_{ob} </math> = liquid density at the bubble point pressure, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_{bs} </math> = liquid density at reservoir pressure and 60°F, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_o </math> = oil density, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_{po} </math> = pseudoliquid formed by recombination of surface gas and liquid at standard conditions, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \triangle \rho_{P} </math> = adjustment to liquid density due to pressure, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \triangle \rho_{T} </math> = adjustment to liquid density due to temperature, lb<sub>m</sub>/ft<sup>3</sup>
 
 
 
===Subscripts===
 
:b - bubble point <BR/>
 
:g - gas<BR/>
 
:o - oil
 
  
 
== References ==
 
== References ==
 
<references>
 
<references>
<ref name=M1995>{{cite journal
 
|last1=McCain|first1=W.D. Jr.
 
|last2= Hill |first2=N. C.
 
|title=Correlations for Liquid Densities and Evolved Gas Specific Gravities for Black Oils During Pressure Depletion
 
|journal=Society of Petroleum Engineers
 
|number=SPE-30773-MS
 
|date=1995
 
|url=https://www.onepetro.org/conference-paper/SPE-30773-MS
 
|url-access=registration
 
}}</ref>
 
 
 
<ref name=M1990>{{cite book
 
<ref name=M1990>{{cite book
 
  |last1=McCain|first1=W.D. Jr.
 
  |last1=McCain|first1=W.D. Jr.
Line 119: Line 52:
 
  |url=http://www.pennwellbooks.com/petroleum/oil-gas-production/the-properties-of-petroleum-fluids-2nd-edition/
 
  |url=http://www.pennwellbooks.com/petroleum/oil-gas-production/the-properties-of-petroleum-fluids-2nd-edition/
 
  |ISBN=978-0878143351
 
  |ISBN=978-0878143351
 +
}}</ref>
 +
<ref name=PracticalPVT>
 +
{{cite journal
 +
|last1= Afanasyev |first1=Vitaliy
 +
|last2= Moskvin |first2=Igor
 +
|last3= Wolcott |first3=Ken
 +
|last4= McCain |first4=W.D.
 +
|title=Practical PVT Calculations for black oils
 +
|journal=YUKOS publication
 +
|date=2004
 
}}</ref>
 
}}</ref>
 
<ref name=DW>
 
<ref name=DW>
Line 136: Line 79:
  
 
{{#seo:
 
{{#seo:
|title=McCain Oil density correlation
+
|title=McCain Oil Formation Volume Factor equation
 
|titlemode= replace
 
|titlemode= replace
|keywords=density of oil, petroleum engineering, PVT
+
|keywords=oil formation volume factor, petroleum engineering, PVT
|description=McCain Oil density correlation is an empirical correlation for the oil density published in 1995.
+
|description=McCain Oil Formation Volume Factor equation is determined from material material balance equation based on the definition of the oil formation volume factor
 
}}
 
}}

Latest revision as of 12:37, 28 September 2020

McCain Oil Formation Volume Factor equation

McCain equation is determined from material balance equation based on the definition of the oil formation volume factor[1].

McCain Oil Formation Volume Factor equation in the PVT Software

Math & Physics

B_o = \frac{\rho_{STO}+1.22117\ R_s\ SG_g}{\rho_{oR}}[2]

Example. Calculation of the oil formation volume factor

Example source [3]

Input data

R_s = 53.24 sm3/sm3 at P = 10 MPa
SG_o = 0.85 or 35 API
SG_g = 0.75
\rho_{oR} = 749 kg/m3 at P = 10 MPa

Calculate oil formation oil factor at p = 10 MPa?

Solution

B_o = 1.199 rm3/sm3

The solution is available in the online PVT calculator software model at www.pengtools.com

Application range

  2.35 \le R_s \le 322
  0.754 \le SG_o \le 0.989
  0.555 \le SG_g \le 1.245
  21.1 \le T, C \le 160

Nomenclature

 B_o = oil formation volume factor, rm3/sm3
 R_s = solution gas-oil ratio, sm3/sm3
 SG_g = gas specific gravity, dimensionless
 SG_o = oil specific gravity, dimensionless
 \rho_{oR} = oil density at reservoir conditions, kg/m3
 \rho_{STO} = SG_o \times 1000 = stock tank oil density, kg/m3

References

  1. McCain, W.D. Jr. (1990). Properties of Petroleum Fluids (2 ed.). Oklahoma: PennWell Corp. ISBN 978-0878143351. 
  2. Afanasyev, Vitaliy; Moskvin, Igor; Wolcott, Ken; McCain, W.D. (2004). "Practical PVT Calculations for black oils". YUKOS publication. 
  3. Wolcott, Don (2009). Applied Waterflood Field DevelopmentPaid subscription required. Houston: Energy Tribune Publishing Inc.