Difference between revisions of "McCain Oil density correlation"
From wiki.pengtools.com
(→Math & Physics) |
|||
(22 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__TOC__ | __TOC__ | ||
− | == | + | == McCain Oil density correlation== |
− | [[McCain Oil density correlation|McCain]] is an empirical correlation for the '''oil density''' published in '''1995''' <ref name= M1995/>. | + | [[McCain Oil density correlation|McCain correlation]] is an empirical correlation for the '''oil density''' published in '''1995''' <ref name= M1995/>. |
− | [[File:McCain Oil density.png|thumb|right|400px|https://www.pengtools.com/pvtCalculator?paramsToken= | + | [[File:McCain Oil density.png|thumb|right|400px|https://www.pengtools.com/pvtCalculator?paramsToken=de71e4cc29541ab2117e07408864410c|McCain oil density correlation in the PVT Software]] |
− | + | == Math & Physics == | |
Pseudoliquid density: | Pseudoliquid density: | ||
Line 15: | Line 15: | ||
Apparent liquid density: | Apparent liquid density: | ||
− | :<math>\rho_a = | + | :<math>\rho_a = a_0 + a_1\ SG_{gSP} + a_2\ SG_{gSP}\ \rho_{po} + a_3\ SG_{gSP}\ \rho_{po}^2 + a_4\ \rho_{po} +a_5\ \rho_{po}^2 </math> |
+ | :<math>a_0 = -49.8930</math> | ||
+ | :<math>a_1 = 85.0149</math> | ||
+ | :<math>a_2 = - 3.70373</math> | ||
+ | :<math>a_3 = 0.0479818</math> | ||
+ | :<math>a_4 = 2.98914</math> | ||
+ | :<math>a_5 =- 0.0356888</math> | ||
− | Next pseudoliquid density: | + | Next pseudoliquid density<ref name= M1990/>: |
− | :<math>\rho_{po} = \frac{R_s\ SG_g + 4,600\ SG_o}{73.71+R_s\ SG_g\ / \rho_a}</math | + | :<math>\rho_{po} = \frac{R_s\ SG_g + 4,600\ SG_o}{73.71+R_s\ SG_g\ / \rho_a}</math> |
Iterate until pseudoliquid densities are equal. | Iterate until pseudoliquid densities are equal. | ||
Line 28: | Line 34: | ||
where | where | ||
− | :<math>\triangle \rho_{P} = \left ( 0. | + | :<math>\triangle \rho_{P} = \left ( 0.167 + 16.181 \times 10^{-0.0425\ \rho_{po}} \right) \frac{P}{1000} - 0.01 \left ( 0.299 + 263 \times 10^{-0.0603\ \rho_{po}}\right)\ \left (\frac{P}{1000}\right)^2 </math> |
Adjust density to the temperature of interest: | Adjust density to the temperature of interest: | ||
Line 38: | Line 44: | ||
:<math>\triangle \rho_T = (0.00302 + 1.505\ \rho_{bs}^{-0.951}) (T - 60)^{0.938} - (0.0216 - 0.0233\ (10^{-0.0161\ \rho_{bs}})) (T - 60)^{0.475}</math> | :<math>\triangle \rho_T = (0.00302 + 1.505\ \rho_{bs}^{-0.951}) (T - 60)^{0.938} - (0.0216 - 0.0233\ (10^{-0.0161\ \rho_{bs}})) (T - 60)^{0.475}</math> | ||
− | + | Oil density above the bubble point pressure: | |
:<math>\rho_{o} = \rho_{b}\ e^{c_o\ (P - P_b)} </math> | :<math>\rho_{o} = \rho_{b}\ e^{c_o\ (P - P_b)} </math> | ||
− | === | + | == Example. Calculation of the oil density == |
− | === Application range | + | Example source <ref name=DW/> |
+ | ===Input data=== | ||
+ | :<math>R_s</math> = 53.24 sm3/sm3 | ||
+ | :<math>SG_o</math> = 0.85 or 35 API | ||
+ | :<math>SG_g</math> = 0.75 | ||
+ | :<math>T</math> = 90C or 363K | ||
+ | :<math>P</math> = 10 MPa | ||
+ | Calculate oil density at p = 10 MPa? | ||
+ | |||
+ | ===Solution=== | ||
+ | :<math>\rho_o</math> = 749.645 kg/m3 | ||
+ | |||
+ | The solution is available in the online PVT calculator software model at [https://www.pengtools.com/pvtCalculator?paramsToken=de71e4cc29541ab2117e07408864410c www.pengtools.com] | ||
+ | |||
+ | == Application range == | ||
Description of the Data Used<ref name= M1995/>: | Description of the Data Used<ref name= M1995/>: | ||
Line 55: | Line 75: | ||
Number of data sets = 684<BR/> | Number of data sets = 684<BR/> | ||
− | + | == Nomenclature == | |
:<math> c_o </math> = oil compressibility, 1/psia | :<math> c_o </math> = oil compressibility, 1/psia | ||
:<math> P </math> = pressure, psia | :<math> P </math> = pressure, psia | ||
:<math> R_s </math> = solution gas-oil ratio, scf/stb | :<math> R_s </math> = solution gas-oil ratio, scf/stb | ||
:<math> SG_g </math> = gas specific gravity, dimensionless | :<math> SG_g </math> = gas specific gravity, dimensionless | ||
+ | :<math> SG_{gSP} </math> = gas specific gravity at separator pressure, dimensionless | ||
:<math> SG_o </math> = oil specific gravity, dimensionless | :<math> SG_o </math> = oil specific gravity, dimensionless | ||
:<math> T </math> = temperature, °F | :<math> T </math> = temperature, °F | ||
:<math> \rho_{a} </math> = apparent density of surface gas if it were a liquid, lb<sub>m</sub>/ft<sup>3</sup> | :<math> \rho_{a} </math> = apparent density of surface gas if it were a liquid, lb<sub>m</sub>/ft<sup>3</sup> | ||
+ | :<math> \rho_{ob} </math> = liquid density at the bubble point pressure, lb<sub>m</sub>/ft<sup>3</sup> | ||
:<math> \rho_{bs} </math> = liquid density at reservoir pressure and 60°F, lb<sub>m</sub>/ft<sup>3</sup> | :<math> \rho_{bs} </math> = liquid density at reservoir pressure and 60°F, lb<sub>m</sub>/ft<sup>3</sup> | ||
:<math> \rho_o </math> = oil density, lb<sub>m</sub>/ft<sup>3</sup> | :<math> \rho_o </math> = oil density, lb<sub>m</sub>/ft<sup>3</sup> | ||
Line 70: | Line 92: | ||
:<math> \triangle \rho_{T} </math> = adjustment to liquid density due to temperature, lb<sub>m</sub>/ft<sup>3</sup> | :<math> \triangle \rho_{T} </math> = adjustment to liquid density due to temperature, lb<sub>m</sub>/ft<sup>3</sup> | ||
− | + | ===Subscripts=== | |
:b - bubble point <BR/> | :b - bubble point <BR/> | ||
:g - gas<BR/> | :g - gas<BR/> | ||
:o - oil | :o - oil | ||
− | + | == References == | |
<references> | <references> | ||
<ref name=M1995>{{cite journal | <ref name=M1995>{{cite journal | ||
Line 98: | Line 120: | ||
|ISBN=978-0878143351 | |ISBN=978-0878143351 | ||
}}</ref> | }}</ref> | ||
− | + | <ref name=DW> | |
+ | {{cite book | ||
+ | |last1= Wolcott |first1=Don | ||
+ | |title=Applied Waterflood Field Development | ||
+ | |date=2009 | ||
+ | |publisher=Energy Tribune Publishing Inc | ||
+ | |place=Houston | ||
+ | |url=https://www.amazon.com/Applied-Waterflood-Field-Development-Wolcott/dp/0578023946/ref=sr_1_1?ie=UTF8&qid=1481788841&sr=8-1&keywords=Don+wolcott | ||
+ | |url-access=subscription | ||
+ | }}</ref> | ||
</references> | </references> | ||
Latest revision as of 18:41, 23 November 2023
Contents
McCain Oil density correlation
McCain correlation is an empirical correlation for the oil density published in 1995 [1].
Math & Physics
Pseudoliquid density:
Apparent liquid density:
Next pseudoliquid density[2]:
Iterate until pseudoliquid densities are equal.
Next adjust density to the pressure of interest:
where
Adjust density to the temperature of interest:
where
Oil density above the bubble point pressure:
Example. Calculation of the oil density
Example source [3]
Input data
- = 53.24 sm3/sm3
- = 0.85 or 35 API
- = 0.75
- = 90C or 363K
- = 10 MPa
Calculate oil density at p = 10 MPa?
Solution
- = 749.645 kg/m3
The solution is available in the online PVT calculator software model at www.pengtools.com
Application range
Description of the Data Used[1]:
Number of data sets = 684
Nomenclature
- = oil compressibility, 1/psia
- = pressure, psia
- = solution gas-oil ratio, scf/stb
- = gas specific gravity, dimensionless
- = gas specific gravity at separator pressure, dimensionless
- = oil specific gravity, dimensionless
- = temperature, °F
- = apparent density of surface gas if it were a liquid, lbm/ft3
- = liquid density at the bubble point pressure, lbm/ft3
- = liquid density at reservoir pressure and 60°F, lbm/ft3
- = oil density, lbm/ft3
- = pseudoliquid formed by recombination of surface gas and liquid at standard conditions, lbm/ft3
- = adjustment to liquid density due to pressure, lbm/ft3
- = adjustment to liquid density due to temperature, lbm/ft3
Subscripts
- b - bubble point
- g - gas
- o - oil
References
- ↑ 1.0 1.1 McCain, W.D. Jr.; Hill, N. C. (1995). "Correlations for Liquid Densities and Evolved Gas Specific Gravities for Black Oils During Pressure Depletion". Society of Petroleum Engineers (SPE-30773-MS).
- ↑ McCain, W.D. Jr. (1990). Properties of Petroleum Fluids (2 ed.). Oklahoma: PennWell Corp. ISBN 978-0878143351.
- ↑ Wolcott, Don (2009). Applied Waterflood Field Development. Houston: Energy Tribune Publishing Inc.