Difference between revisions of "Beggs and Robinson Oil Viscosity correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Created page with "__TOC__ === Brief === Beggs - Robinson correlation is ... === Math & Physics === Dead oil viscosity: :<math>\mu_{od} = 10^X-1</math><ref name= {Beggs - Robinson}/> w...")
 
(Beggs and Robinson Oil Viscosity correlation)
 
(53 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
__TOC__
 
__TOC__
  
=== Brief ===
+
== Beggs and Robinson Oil Viscosity correlation ==
  
[[Beggs - Robinson correlation]] is ...
+
[[Beggs and Robinson Oil Viscosity correlation|Beggs and Robinson]] is an empirical correlation for the '''oil viscosity''' published in '''1975''' <ref name= BR1975/>.
  
=== Math & Physics ===
+
[[File:Beggs and Robinson.png|thumb|right|400px|link=https://www.pengtools.com/pvtCalculator?paramsToken=b79727e91f05b72cbb6d99afcb588636|Beggs and Robinson oil viscosity correlation in the PVT Software]]
 +
 
 +
== Math & Physics ==
  
 
Dead oil viscosity:
 
Dead oil viscosity:
  
:<math>\mu_{od} = 10^X-1</math><ref name= {Beggs - Robinson}/>
+
:<math>\mu_{od} = 10^x-1</math>
  
 
where:
 
where:
  
A0 = -1.163<br/>
+
:<math>x = T^{-1.163} \times e^{(13.108-6.591/SG_{o})}</math>
A1 = 13.108<br/>
 
A2 = 6.591<br/>
 
  
:<math>X = T^{A_0} \times e^{A_1-A_2/SG_{o}}</math>
+
Saturated oil viscosity (P < P<sub>b</sub>):
  
Saturated oil viscosity:
+
:<math>\mu_{os} =  A \mu_{od}^B</math>
  
:<math>\mu_{os} = \alpha1 \mu^{\alpha2}_{od}</math>
+
where:
 +
 
 +
:<math> A = 10.715\ (R_s + 100)^{-0.515} </math>
 +
 
 +
:<math> B = 5.44\ (R_s + 150)^{-0.338} </math>
 +
 
 +
Undersaturated oil viscosity (P > P<sub>b</sub>):
 +
 
 +
:<math>\mu_{o} =  \mu_{os} (P/P_b)^m </math><ref name=VB1980/>
  
 
where:
 
where:
B0 = 10.715<br/>
 
B1 = 5.615<br/>
 
B2 = 0.515<br/>
 
  
:<math> \alpha1 = B_0 * (B_1 * R + 100)^B2) </math>
+
:<math>m = 2.6\ P^{1.187}\ e^{(-11.513-8.98 \times 10^{-5}\ P)}</math>
 +
 
 +
== Example. Calculation of the oil viscosity ==
 +
Example source <ref name=1987PEH/>
 +
===Input data===
 +
:<math>T</math> = 137 F°
 +
:<math>SG_o</math> = 0.922 or 22 API
 +
:<math>R_s</math> = 90 scf/stb
 +
 
 +
Calculate the saturated oil viscosity?
 +
 
 +
===Solution===
 +
x = 1.2658
 +
:<math>\mu_{od}</math> = 17.44 cP
 +
A = 0.719
 +
B = 0.853
 +
:<math>\mu_o</math> = 8.24 cP
 +
 
 +
The solution is available in the online PVT calculator software model at [https://www.pengtools.com/pvtCalculator?paramsToken=b79727e91f05b72cbb6d99afcb588636 www.pengtools.com]
  
C0 = 5.44<br/>
+
== Application range ==
C1 = 5.615<br/>
+
Description of the Data Used<ref name= BR1975/>:
C2 = 0.338<br/>
 
  
:<math> \alpha2 = C_0 * pow(C_1 * R + 150, -C_3) </math>
+
:<math> 20 \le R_s \le 2,070 </math>
 +
:<math>  0.75 \le SG_o \le 0.96 </math>
 +
:<math>  0 \le P \le 5250 </math>
 +
:<math>  70 \le T \le 295 </math>
  
=== Discussion  ===
+
Number of oil systems = 600<BR/>
=== Workflow  ===
+
Number of dead oil observations = 460<BR/>
=== Application range ===
+
Number of live oil observations = 2,073<BR/>
=== Nomenclature ===
 
:<math> A_0..A_{2} </math> = coefficients
 
:<math> B_0..B_{2} </math> = coefficients
 
:<math> C_0..C_{2} </math> = coefficients
 
:<math> P </math> = pressure, MPA
 
:<math> P_{bp} </math> = bubble point pressure, MPA
 
:<math> R_s </math> =  oil gas ration, m3/m3
 
:<math> SG_g </math> = gas specific gravity, dimensionless
 
:<math> T </math> = temperature, °R
 
:<math> Y_{oil_API} </math> = oil API gravity, dimensionless
 
  
=== References ===
+
== Nomenclature ==
 +
:<math> A </math> = coefficient
 +
:<math> B </math> = coefficient
 +
:<math> m </math> = coefficient
 +
:<math> P </math> = pressure, psia
 +
:<math> R_s </math> =  solution gas-oil ratio, scf/stb
 +
:<math> SG_o </math> = oil specific gravity, dimensionless
 +
:<math> T </math> = temperature, °F
 +
:<math> x </math> = coefficient
 +
 
 +
:<math> \mu </math> = viscosity, cP
 +
 
 +
====Subscripts====
 +
:b - bubble point <BR/>
 +
:od - dead oil <BR/>
 +
:os - saturated oil <BR/>
 +
:o  - undersaturated oil <BR/>
 +
 
 +
== References ==
 
<references>
 
<references>
<ref name={Beggs - Robinson}>
+
<ref name=BR1975>{{cite journal
 +
|last1=Beggs|first1=H. D.
 +
|last2= Robinson |first2=J. R.
 +
|title=Estimating the Viscosity of Crude Oil Systems
 +
|journal=Journal of Petroleum Technology
 +
|number=SPE-5434-PA
 +
|date=September 1975
 +
|volume=27(09)
 +
|url=https://www.onepetro.org/journal-paper/SPE-5434-PA
 +
|url-access=registration
 +
}}</ref>
 +
 
 +
<ref name=VB1980>
 
{{cite journal
 
{{cite journal
  |last1= Vazquez |first1=M.
+
  |last1= Vasquez |first1=M.
 
  |last2= Beggs |first2=H.D.
 
  |last2= Beggs |first2=H.D.
 
  |title=Correlations for Fluid Physical Property Prediction.
 
  |title=Correlations for Fluid Physical Property Prediction.
Line 62: Line 107:
 
  |url=https://www.onepetro.org/journal-paper/SPE-6719-PA
 
  |url=https://www.onepetro.org/journal-paper/SPE-6719-PA
 
  |url-access=registration  
 
  |url-access=registration  
 +
}}</ref>
 +
<ref name=1987PEH>
 +
{{cite book
 +
|last1= Beggs |first1=H. Dale
 +
|title=Oil System Correlations (1987 PEH Chapter 22)
 +
|date=1987
 +
|publisher=Society of Petroleum Engineers
 +
|url=https://www.onepetro.org/book/peh/spe-1987-22-peh
 +
|url-access=registration
 
}}</ref>
 
}}</ref>
 
</references>
 
</references>
Line 67: Line 121:
 
[[Category:pengtools]]
 
[[Category:pengtools]]
 
[[Category:PVT]]
 
[[Category:PVT]]
 +
 +
{{#seo:
 +
|title=Beggs and Robinson oil viscosity correlation
 +
|titlemode= replace
 +
|keywords=oil viscosity, Beggs and Robinson correlation, dead oil viscosity
 +
|description=Beggs and Robinson correlation is an empirical correlation for the oil viscosity published in 1975.
 +
}}

Latest revision as of 12:15, 28 September 2020

Beggs and Robinson Oil Viscosity correlation

Beggs and Robinson is an empirical correlation for the oil viscosity published in 1975 [1].

Beggs and Robinson oil viscosity correlation in the PVT Software

Math & Physics

Dead oil viscosity:

\mu_{od} = 10^x-1

where:

x = T^{-1.163} \times e^{(13.108-6.591/SG_{o})}

Saturated oil viscosity (P < Pb):

\mu_{os} =  A \mu_{od}^B

where:

 A = 10.715\ (R_s + 100)^{-0.515}
 B = 5.44\ (R_s + 150)^{-0.338}

Undersaturated oil viscosity (P > Pb):

\mu_{o} =  \mu_{os} (P/P_b)^m [2]

where:

m = 2.6\ P^{1.187}\ e^{(-11.513-8.98 \times 10^{-5}\ P)}

Example. Calculation of the oil viscosity

Example source [3]

Input data

T = 137 F°
SG_o = 0.922 or 22 API
R_s = 90 scf/stb

Calculate the saturated oil viscosity?

Solution

x = 1.2658

\mu_{od} = 17.44 cP

A = 0.719 B = 0.853

\mu_o = 8.24 cP

The solution is available in the online PVT calculator software model at www.pengtools.com

Application range

Description of the Data Used[1]:

  20 \le R_s \le 2,070
  0.75 \le SG_o \le 0.96
  0 \le P \le 5250
  70 \le T \le 295

Number of oil systems = 600
Number of dead oil observations = 460
Number of live oil observations = 2,073

Nomenclature

 A = coefficient
 B = coefficient
 m = coefficient
 P = pressure, psia
 R_s = solution gas-oil ratio, scf/stb
 SG_o = oil specific gravity, dimensionless
 T = temperature, °F
 x = coefficient
 \mu = viscosity, cP

Subscripts

b - bubble point
od - dead oil
os - saturated oil
o - undersaturated oil

References

  1. 1.0 1.1 Beggs, H. D.; Robinson, J. R. (September 1975). "Estimating the Viscosity of Crude Oil Systems"Free registration required. Journal of Petroleum Technology. 27(09) (SPE-5434-PA). 
  2. Vasquez, M.; Beggs, H.D. (1980). "Correlations for Fluid Physical Property Prediction."Free registration required. Society of Petroleum Engineers (SPE-6719-PA). 
  3. Beggs, H. Dale (1987). Oil System Correlations (1987 PEH Chapter 22)Free registration required. Society of Petroleum Engineers.