Difference between revisions of "Beggs and Brill correlation"
 (→Workflow)  | 
				|||
| (48 intermediate revisions by the same user not shown) | |||
| Line 7: | Line 7: | ||
[[Beggs and Brill correlation |Beggs and Brill]] is the default [[VLP]] correlation in [[:Category:sPipe|sPipe]].  | [[Beggs and Brill correlation |Beggs and Brill]] is the default [[VLP]] correlation in [[:Category:sPipe|sPipe]].  | ||
| − | [[File: Beggs and Brill.png|thumb|500px|link=https://www.pengtools.com|Beggs and Brill in sPipe Vs GAP |right]]  | + | [[File: Beggs and Brill.png|thumb|500px|link=https://www.pengtools.com/sPipe?paramsToken=cc8af4bdd85a3d7da86119d5367742e2|Beggs and Brill in sPipe Vs GAP |right]]  | 
== Math & Physics ==  | == Math & Physics ==  | ||
=== Fluid flow energy balance ===  | === Fluid flow energy balance ===  | ||
| − | :<math> -144 \frac{\Delta p}{\Delta z} = \frac{sin(\theta)\ \bar \rho_m + \frac{f'\ G_m\ v_m}{2\ g_c\ D}}{1- \bar \rho_m\ \frac{v_m\ v_{SG}}{g_c\ p}}</math><ref name="BB" />  | + | :<math> -144 \frac{\Delta p}{\Delta z} = \frac{sin(\theta)\ \bar \rho_m + \frac{f'\ G_m\ v_m}{2\ g_c\ D}}{1- \bar \rho_m\ \frac{v_m\ v_{SG}}{g_c\ \frac{p}{144}}}</math><ref name="BB" />  | 
where  | where  | ||
:<math> \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)</math><ref name="BB" />  | :<math> \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)</math><ref name="BB" />  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
=== Friction factor  ===  | === Friction factor  ===  | ||
No slip Reynolds two phase number:  | No slip Reynolds two phase number:  | ||
| − | :<math> Re = 1488 \times \frac {\rho_{m,ns} v_m D}   | + | :<math> Re = 1488 \times \frac {\rho_{m,ns} v_m D} { \mu_L\ C_L + \mu_g\ (1-C_L) } </math><ref name="BB1991" />  | 
Colebrook–White <ref name=Colebrook/> equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:  | Colebrook–White <ref name=Colebrook/> equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:  | ||
| Line 50: | Line 27: | ||
where  | where  | ||
| − | :<math> S = \frac{ ln(y)}{ -0.0523 + 3.182\ ln(y) - 0.8725\ ln(y)^2 + 0.01853\ ln(y)^ 4}</math><ref name="BB1991" />  | + | :<math> S = \frac{ ln(y)}{ -0.0523 + 3.182\ ln(y) - 0.8725\ ln(y)^{2} + 0.01853\ ln(y)^{4}}</math><ref name="BB1991" />  | 
and  | and  | ||
| Line 57: | Line 34: | ||
with constraint:  | with constraint:  | ||
| − | :<math> S = ln (2.2\ y - 1.2), when\ 1   | + | :<math> S = ln (2.2\ y - 1.2), when\ 1 \le y \le 1.2 </math><ref name="BB1991" />  | 
== Discussion  ==  | == Discussion  ==  | ||
| − | Why [[  | + | Why [[Beggs and Brill correlation| Beggs and Brill]]?  | 
| − | {{Quote| text =   | + | {{Quote| text = The best correlation for the horizontal flow.  | source = pengtools.com}}  | 
== Flow Diagram ==  | == Flow Diagram ==  | ||
| Line 69: | Line 46: | ||
[[File: HB Block Diagram.png|400px|HB Block Diagram]]  | [[File: HB Block Diagram.png|400px|HB Block Diagram]]  | ||
| − | == Workflow   | + | == Workflow H<sub>L</sub> ==  | 
:<math> \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} (1-WCUT) + \frac{62.4\ SG_w}{B_w}\ WCUT</math><ref name= Lyons/>  | :<math> \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} (1-WCUT) + \frac{62.4\ SG_w}{B_w}\ WCUT</math><ref name= Lyons/>  | ||
| Line 94: | Line 71: | ||
:<math> L_4 = 0.5\ {C_L}^{-6.738}</math><ref name= BB1991/>  | :<math> L_4 = 0.5\ {C_L}^{-6.738}</math><ref name= BB1991/>  | ||
| − | Determine the flow pattern: SEGREGATED  | + | :<math> N_{FR} = \frac{{v_m}^2}{g_c\ D}</math><ref name="BB" />  | 
| + | |||
| + | '''Determine the flow pattern:'''  | ||
| + | |||
| + | *SEGREGATED: <math> (C_L < 0.01\ \&\ N_{FR}< L_1)\ or\ (C_L\ge0.01\ \&\ N_{FR}<L_2)</math><ref name="BB1991" />  | ||
| + | *TRANSITION: <math> C_L \ge 0.01\ \&\ L_2 \le N_{FR} \le L_3</math><ref name="BB1991" />  | ||
| + | *INTERMITTENT: <math> (0.01 \le C_L <0.4\ \&\  L_3<N_{FR}\le L_1)\ or\ ( C_L\ge0.4\ \&\ L_3<N_{FR} \le L_4)</math><ref name="BB1991" />  | ||
| + | *DISTRIBUTED: <math> (C_L < 0.4\ \&\ N_{FR} \ge L_1)\ or\ (C_L\ge0.4\ \&\ N_{FR}>L_4)</math><ref name="BB1991" />  | ||
| − | <math> H_{L(0)}:</math>  | + | '''Calculate <math> H_{L(0)}:</math>'''  | 
*SEGREGATED: <math> H_{L(0)} = 0.98 \frac{ {C_L}^{0.4846} } { {N_{FR}}^{0.0868}} </math><ref name="BB1991" />  | *SEGREGATED: <math> H_{L(0)} = 0.98 \frac{ {C_L}^{0.4846} } { {N_{FR}}^{0.0868}} </math><ref name="BB1991" />  | ||
*INTERMITTENT: <math> H_{L(0)} = 0.845 \frac{ {C_L}^{0.5351} } { {N_{FR}}^{0.0173}}</math><ref name="BB1991" />  | *INTERMITTENT: <math> H_{L(0)} = 0.845 \frac{ {C_L}^{0.5351} } { {N_{FR}}^{0.0173}}</math><ref name="BB1991" />  | ||
*DISTRIBUTED: <math> H_{L(0)} = 1.065\frac{ {C_L}^{0.5824} } { {N_{FR}}^{0.0609}}</math><ref name="BB1991" />  | *DISTRIBUTED: <math> H_{L(0)} = 1.065\frac{ {C_L}^{0.5824} } { {N_{FR}}^{0.0609}}</math><ref name="BB1991" />  | ||
| − | with the constraint <math> H_L \ge C_L</math><ref name="BB1991" />  | + | :with the constraint <math> H_L \ge C_L</math><ref name="BB1991" />  | 
| + | |||
| + | |||
| + | :<math> \psi = 1 + C\ (sin(1.8\ \theta) - 0.333\ (sin(1.8\ \theta))^3)</math><ref name="BB1991" />  | ||
| + | |||
| + | :<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= BB1991/>  | ||
'''C Uphill:'''  | '''C Uphill:'''  | ||
| Line 110: | Line 99: | ||
'''C Downhill:'''  | '''C Downhill:'''  | ||
*ALL: <math> C = (1-C_L)\ ln( 4.7\times {N_{LV}}^{0.1244}\times {C_L}^{-0.3692}\times {F_{FR}}^{-0.5056})</math><ref name="BB1991" />  | *ALL: <math> C = (1-C_L)\ ln( 4.7\times {N_{LV}}^{0.1244}\times {C_L}^{-0.3692}\times {F_{FR}}^{-0.5056})</math><ref name="BB1991" />  | ||
| − | |||
| − | + | :with the restriction <math> C \ge 0 </math><ref name="BB1991" />  | |
| − | :  | + | '''Finally:'''  | 
| − | :  | + | *SEGREGATED, INTERMITTENT, DISTRIBUTED:  | 
| + | :<math> H_L = H_{L(0)} \times \psi </math><ref name="BB1991" />  | ||
| + | *TRANSITION:   | ||
| − | :<math>   | + | :<math> H_L = A \times H_{L(segregated)} + (1-A) \times {H_{L(intermittent)}} </math><ref name="BB1991" />  | 
| − | :  | + | where:  | 
| − | + | :<math> A = \frac{L_3-N_{FR}}{L_3-L_2}</math><ref name="BB1991" />  | |
| − | :<math>   | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | -  | ||
| − | |||
| − | |||
| − | |||
| − | |||
== Modifications  ==  | == Modifications  ==  | ||
| − | 1.   | + | 1. Force approach gas at low C<sub>L</sub>. If C<sub>L</sub><0.001 Then f'=f.    | 
| − | 2.   | + | 2. Force approach to single phase fluid. If H<sub>L</sub>>1 Then H<sub>L</sub>=1.    | 
| − | 3. Use   | + | 3. Use calculated water density instead of the constant value of 62.4 lbm/ft3.  | 
== Nomenclature  ==  | == Nomenclature  ==  | ||
| + | :<math> A </math> = correlation variable, dimensionless  | ||
:<math> A_p </math> = flow area, ft2  | :<math> A_p </math> = flow area, ft2  | ||
| − | |||
:<math> B </math> = formation factor, bbl/stb  | :<math> B </math> = formation factor, bbl/stb  | ||
| − | :<math> C </math> =   | + | :<math> C </math> = correlation variable, dimensionless  | 
| + | :<math> C_L </math> = non-slip liquid holdup factor, dimensionless  | ||
:<math> D </math> = pipe diameter, ft  | :<math> D </math> = pipe diameter, ft  | ||
| + | :<math> G </math> = total flux weight, lb<sub>m</sub>/ft<sup>2</sup>/sec  | ||
:<math> h </math> = depth, ft  | :<math> h </math> = depth, ft  | ||
| − | |||
:<math> H_L </math> = liquid holdup factor, dimensionless  | :<math> H_L </math> = liquid holdup factor, dimensionless  | ||
| + | :<math> H_{L(0)} </math> = liquid holdup factor when flow is horizontal, dimensionless  | ||
:<math> f </math> = friction factor, dimensionless  | :<math> f </math> = friction factor, dimensionless  | ||
| + | :<math> f' </math> = corrected friction factor, dimensionless  | ||
:<math> GLR </math> = gas-liquid ratio, scf/bbl  | :<math> GLR </math> = gas-liquid ratio, scf/bbl  | ||
| − | :<math>   | + | :<math> L_1, L_2, L_3, L_4 </math> = correlation variables, dimensionless  | 
| − | + | :<math> N_FR </math> = Froude number, dimensionless  | |
| − | |||
| − | :<math>   | ||
:<math> N_LV </math> = liquid velocity number, dimensionless  | :<math> N_LV </math> = liquid velocity number, dimensionless  | ||
:<math> p </math> = pressure, psia  | :<math> p </math> = pressure, psia  | ||
:<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>  | :<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>  | ||
| − | :<math> q </math> =   | + | :<math> q </math> = flow rate, bbl/d - liquid, scf/d - gas  | 
:<math> Re </math> = Reynolds number, dimensionless  | :<math> Re </math> = Reynolds number, dimensionless  | ||
:<math> R_s </math> = solution gas-oil ratio, scf/stb  | :<math> R_s </math> = solution gas-oil ratio, scf/stb  | ||
| + | :<math> S </math> = correlation variable, dimensionless  | ||
:<math> SG </math> = specific gravity, dimensionless  | :<math> SG </math> = specific gravity, dimensionless  | ||
:<math> T </math> = temperature, °R or °K, follow the subscript  | :<math> T </math> = temperature, °R or °K, follow the subscript  | ||
:<math> v </math> = velocity, ft/sec  | :<math> v </math> = velocity, ft/sec  | ||
| − | :<math>   | + | :<math> WCUT </math> = watercut, fraction  | 
| + | :<math> y </math> = correlation variable, dimensionless  | ||
:<math> z </math> = gas compressibility factor, dimensionless  | :<math> z </math> = gas compressibility factor, dimensionless  | ||
| Line 181: | Line 159: | ||
:<math> \mu </math> = viscosity, cp  | :<math> \mu </math> = viscosity, cp  | ||
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>  | :<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>  | ||
| − | :<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>  | + | :<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>3</sup>  | 
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)  | :<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)  | ||
| − | :<math> \psi </math> =   | + | :<math> \psi </math> = inclination correction factor, dimensionless  | 
| + | :<math> \theta </math> = inclination angle, ° from horizontal  | ||
===Subscripts===  | ===Subscripts===  | ||
| Line 191: | Line 170: | ||
L = liquid<BR/>  | L = liquid<BR/>  | ||
m = gas/liquid mixture<BR/>  | m = gas/liquid mixture<BR/>  | ||
| + | ns = non-slip<BR/>  | ||
o = oil<BR/>  | o = oil<BR/>  | ||
R = °R<BR/>  | R = °R<BR/>  | ||
| Line 215: | Line 195: | ||
}}</ref>  | }}</ref>  | ||
| − | <ref name=  | + | <ref name=BB1991>{{cite book  | 
| − |   |last1=   | + |   |last1= Brill |first1=J. P.  | 
| − |   |last2=   | + |   |last2=Beggs|first2=H. D.  | 
| − | + |   |title=Two-Phase Flow In Pipes  | |
| − | + |   |edition=6  | |
| − |   |title=  | + |   |date=1991  | 
| − |   |edition=  | + |   |publisher=U. of Tulsa Tulsa  | 
| − |   |date=  | + |   |place=Oklahoma  | 
| − |   |publisher=  | + |   |url=https://www.scribd.com/document/130564301/Twophase-Flow-in-Pipes-Beggs-Amp-Brill  | 
| − |   |place=  | + |  |url-access=subscription  | 
| − |   |  | ||
}}</ref>  | }}</ref>  | ||
| Line 261: | Line 240: | ||
  |place=Houston, TX  |   |place=Houston, TX  | ||
  |isbn=0-88415-643-5  |   |isbn=0-88415-643-5  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
}}</ref>  | }}</ref>  | ||
| Line 275: | Line 245: | ||
[[Category:pengtools]]  | [[Category:pengtools]]  | ||
| − | [[Category:  | + | [[Category:sPipe]]  | 
| + | |||
| + | |||
| + | {{#seo:  | ||
| + | |title=Beggs and Brill correlation  | ||
| + | |titlemode= replace  | ||
| + | |keywords=brill wiki, Beggs and Brill, correlation, equation, pipe pressure drop, pipeline sizing, flow rate, fluids flow, Reynolds number, liquid hold up  | ||
| + | |description=Beggs and Brill correlation used in pressure drop pipe calculator for pipeline sizing  | ||
| + | }}  | ||
Latest revision as of 18:10, 3 November 2018
Contents
Brief
Beggs and Brill is an empirical two-phase flow correlation published in 1972 [1].
It distinguish between 4 flow regimes.
Beggs and Brill is the default VLP correlation in sPipe.
Math & Physics
Fluid flow energy balance
where
Friction factor
No slip Reynolds two phase number:
Colebrook–White [3] equation for the Darcy's friction factor:
Corrected two phase friction factor:
where
and
with constraint:
Discussion
Why Beggs and Brill?
The best correlation for the horizontal flow.— pengtools.com
Flow Diagram
Workflow HL
Determine the flow pattern:
Calculate 
- with the constraint 
[2] 
C Uphill:
C Downhill:
- ALL: 
[2] 
- with the restriction 
[2] 
Finally:
- SEGREGATED, INTERMITTENT, DISTRIBUTED:
 
- TRANSITION:
 
where:
Modifications
1. Force approach gas at low CL. If CL<0.001 Then f'=f.
2. Force approach to single phase fluid. If HL>1 Then HL=1.
3. Use calculated water density instead of the constant value of 62.4 lbm/ft3.
Nomenclature
 = correlation variable, dimensionless
 = flow area, ft2
 = formation factor, bbl/stb
 = correlation variable, dimensionless
 = non-slip liquid holdup factor, dimensionless
 = pipe diameter, ft
 = total flux weight, lbm/ft2/sec
 = depth, ft
 = liquid holdup factor, dimensionless
 = liquid holdup factor when flow is horizontal, dimensionless
 = friction factor, dimensionless
 = corrected friction factor, dimensionless
 = gas-liquid ratio, scf/bbl
 = correlation variables, dimensionless
 = Froude number, dimensionless
 = liquid velocity number, dimensionless
 = pressure, psia
 = conversion constant equal to 32.174049, lbmft / lbfsec2
 = flow rate, bbl/d - liquid, scf/d - gas
 = Reynolds number, dimensionless
 = solution gas-oil ratio, scf/stb
 = correlation variable, dimensionless
 = specific gravity, dimensionless
 = temperature, °R or °K, follow the subscript
 = velocity, ft/sec
 = watercut, fraction
 = correlation variable, dimensionless
 = gas compressibility factor, dimensionless
Greek symbols
 = absolute roughness, ft
 = viscosity, cp
 = density, lbm/ft3
 = integrated average density at flowing conditions, lbm/ft3
 = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 = inclination correction factor, dimensionless
 = inclination angle, ° from horizontal
Subscripts
g = gas
K = °K
L = liquid
m = gas/liquid mixture
ns = non-slip
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water
References
- ↑ 1.0 1.1 1.2 1.3 Beggs, H. D.; Brill, J. P. (May 1973). "A Study of Two-Phase Flow in Inclined Pipes"
. Journal of Petroleum Technology. AIME. 255 (SPE-4007-PA).
 - ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 Brill, J. P.; Beggs, H. D. (1991). Two-Phase Flow In Pipes
 (6 ed.). Oklahoma: U. of Tulsa Tulsa.
 - ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"
. Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
 - ↑ Moody, L. F. (1944). "Friction factors for pipe flow"
. Transactions of the ASME. 66 (8): 671–684. 
 - ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.
 






























![N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}}](/images/math/d/d/8/dd824df0b6ec22aa724161b929e993fe.png)






