Difference between revisions of "Beggs and Brill correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Friction factor)
 
(87 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
[[Beggs and Brill correlation |Beggs and Brill]] is an empirical two-phase flow correlation published in '''1972'''  <ref name=BB />.
 
[[Beggs and Brill correlation |Beggs and Brill]] is an empirical two-phase flow correlation published in '''1972'''  <ref name=BB />.
  
It does distinguish between the flow regimes.
+
It distinguish between 4 flow regimes.
  
 
[[Beggs and Brill correlation |Beggs and Brill]] is the default [[VLP]] correlation in [[:Category:sPipe|sPipe]].
 
[[Beggs and Brill correlation |Beggs and Brill]] is the default [[VLP]] correlation in [[:Category:sPipe|sPipe]].
  
[[File: Beggs and Brill.png|thumb|500px|link=https://www.pengtools.com|Beggs and Brill in sPipe Vs GAP |right]]
+
[[File: Beggs and Brill.png|thumb|500px|link=https://www.pengtools.com/sPipe?paramsToken=cc8af4bdd85a3d7da86119d5367742e2|Beggs and Brill in sPipe Vs GAP |right]]
  
 
== Math & Physics ==
 
== Math & Physics ==
 
=== Fluid flow energy balance ===
 
=== Fluid flow energy balance ===
Following the law of conservation of energy the basic steady state flow equation is:
+
:<math> -144 \frac{\Delta p}{\Delta z} = \frac{sin(\theta)\ \bar \rho_m + \frac{f'\ G_m\ v_m}{2\ g_c\ D}}{1- \bar \rho_m\ \frac{v_m\ v_{SG}}{g_c\ \frac{p}{144}}}</math><ref name="BB" />
:<math> -144 \frac{\Delta p}{\Delta z} = \frac{sin(\theta)\ \bar \rho_m + \frac{f'\ G_m\ v_m}{2\ g_c\ D}}{1- \bar \rho_m\ \frac{v_m\ v_{SG}}{g_c\ p}}</math><ref name="BB" />
 
 
where
 
where
 
:<math> \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)</math><ref name="BB" />
 
:<math> \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)</math><ref name="BB" />
  
=== Flow patterns ===
+
=== Friction factor ===
SEGREGATED: <math> (C_L < 0.01\ \&\ N_{FR}< L_1)\ or\ (C_L\ge0.01\ \&\ N_{FR}<L_2)</math><ref name="BB1991" />
+
No slip Reynolds two phase number:
 +
:<math> Re = 1488 \times \frac {\rho_{m,ns} v_m D} { \mu_L\ C_L + \mu_g\ (1-C_L) } </math><ref name="BB1991" />
  
TRANSITION: <math> C_L \ge 0.01\ \&\ L_2 \le N_{FR} \le L_3</math><ref name="BB1991" />
+
Colebrook–White <ref name=Colebrook/> equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:
 +
:<math> \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)</math><ref name = Moody1944/>
  
INTERMITTENT: <math> (0.01 \le C_L <0.4\ \&L_3<N_{FR}\le L_1)\ or\ ( C_L\ge0.4\ \&\ L_3<N_{FR} \le L_4)</math><ref name="BB1991" />
+
Corrected two phase friction factor:
 +
:<math> f' = f \times e^S</math><ref name="BB1991" />
  
DISRIBUTED: <math> (C_L < 0.4\ \&\ N_{FR} \ge L_1)\ or\ (C_L\ge0.4\ \&\ N_{FR}>L_4)</math><ref name="BB1991" />
+
where
  
=== Liquid Holdup H<sub>L</sub> ===
+
:<math> S = \frac{ ln(y)}{ -0.0523 + 3.182\ ln(y) - 0.8725\ ln(y)^{2} + 0.01853\ ln(y)^{4}}</math><ref name="BB1991" />
  
SEGREGATED, INTERMITTENT, DISRIBUTED: <math> H_L = H_{L(0)} \times \psi </math><ref name="BB1991" />
+
and
 +
:<math> y = \frac{ C_L} { {H_L}^2 } </math><ref name="BB1991" />
  
SEGREGATED: <math> H_{L(0)} = 0.98 \frac{ {C_L}^{0.4846} } { {N_{FR}}^{0.0868}} </math><ref name="BB1991" />
+
with constraint:
  
INTERMITTENT: <math> H_{L(0)} = 0.845 \frac{ {C_L}^{0.5351} } { {N_{FR}}^{0.0173}}</math><ref name="BB1991" />
+
:<math> S = ln (2.2\ y - 1.2), when\ 1 \le y \le 1.2 </math><ref name="BB1991" />
  
DISRIBUTED: <math> H_{L(0)} = 1.065\frac{ {C_L}^{0.5824} } { {N_{FR}}^{0.0609}}</math><ref name="BB1991" />
+
== Discussion  ==
  
with the constraint <math> H_L \ge C_L</math><ref name="BB1991" />
+
Why [[Beggs and Brill correlation| Beggs and Brill]]?
  
:<math> \psi = 1 + C\ (sin(1.8\ \theta) - 0.333\ (sin(1.8\ \theta))^3)</math><ref name="BB1991" />
+
{{Quote| text = The best correlation for the horizontal flow. | source = pengtools.com}}
  
 +
== Flow Diagram ==
  
Uphill
+
[[File: HB Block Diagram.png|400px|HB Block Diagram]]
  
SEGREGATED: <math> C = (1-C_L)\ ln( 0.011 \times {N_{LV}}^{3.539}\times {C_L}^{-3.768}\times {F_{FR}}^{-1.614})</math><ref name="BB1991" />
+
== Workflow H<sub>L</sub> ==
  
INTERMITTENT: <math> C = (1-C_L)\ ln( 2.96\times {N_{LV}}^{-0.4473}\times {C_L}^{0.305}\times {F_{FR}}^{0.0978})</math><ref name="BB1991" />
+
:<math> \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} (1-WCUT) + \frac{62.4\ SG_w}{B_w}\ WCUT</math><ref name= Lyons/>
  
DISRIBUTED: <math> C=0</math><ref name="BB1991" />
+
:<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/>
  
Downhill
+
:<math> \mu_L = \mu_o (1-WCUT) + \mu_w\ WCUT</math><ref name= Lyons/>
  
ALL: <math> C = (1-C_L)\ ln( 4.7\times {N_{LV}}^{0.1244}\times {C_L}^{-0.3692}\times {F_{FR}}^{-0.5056})</math><ref name="BB1991" />
+
:<math> \sigma_L = \sigma_o (1-WCUT) + \sigma_w\ WCUT</math><ref name= Lyons/>
  
 +
:<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o (1-WCUT) + B_w\ WCUT \right )</math><ref name= Lyons/>
  
TRANSITION: <math> H_L = A \times H_{L(segregated)} + (1-A) \times {H_{L(intermittent)}} </math><ref name="BB1991" />
+
:<math> v_{SG} = \frac{q_g}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math><ref name= Lyons/>
  
where:
+
:<math> G_m = \rho_L \times v_{SL} + \rho_g \times  v_{SG}</math><ref name= Lyons/>
  
<math> A = \frac{L_3-N_{FR}}{L_3-L_2}</math><ref name="BB1991" />
+
:<math> v_m = v_{SL} +  v_{SG}</math>
  
=== Friction factor  ===
+
:<math> C_L = \frac{v_{SL}}{v_m}</math>
No slip Reynolds two phase number:
 
:<math> Re = 1488 \times \frac {\rho_{m,ns} v_m D} { {\mu_L}^{C_L} {\mu_g}^{1-C_L} } </math><ref name="BB1991" />
 
  
Colebrook–White <ref name=Colebrook/> equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:
+
:<math> L_1 = 316\ {C_L}^{0.302}</math><ref name= BB1991/>
:<math> \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)</math><ref name = Moody1944/>
+
:<math> L_2 = 0.0009252\ {C_L}^{-2.4684}</math><ref name= BB1991/>
 +
:<math> L_3 = 0.1\ {C_L}^{-1.4516}</math><ref name= BB1991/>
 +
:<math> L_4 = 0.5\ {C_L}^{-6.738}</math><ref name= BB1991/>
  
:<math> f' = f \times  e^S</math><ref name="BB1991" />
+
:<math> N_{FR} = \frac{{v_m}^2}{g_c\ D}</math><ref name="BB" />
  
where
+
'''Determine the flow pattern:'''
  
:<math> S = \frac{ ln(y)}{ -0.0523 + 3.182\ ln(y) - 0.8725\ ln(y)^2 + 0.01853\ ln(y)^ 4}</math><ref name="BB1991" />
+
*SEGREGATED: <math> (C_L < 0.01\ \&\ N_{FR}< L_1)\ or\ (C_L\ge0.01\ \&\ N_{FR}<L_2)</math><ref name="BB1991" />
 +
*TRANSITION: <math> C_L \ge 0.01\ \&\ L_2 \le N_{FR} \le L_3</math><ref name="BB1991" />
 +
*INTERMITTENT: <math> (0.01 \le C_L <0.4\ \&\  L_3<N_{FR}\le L_1)\ or\ ( C_L\ge0.4\ \&\ L_3<N_{FR} \le L_4)</math><ref name="BB1991" />
 +
*DISTRIBUTED: <math> (C_L < 0.4\ \&\ N_{FR} \ge L_1)\ or\ (C_L\ge0.4\ \&\ N_{FR}>L_4)</math><ref name="BB1991" />
  
:<math> y = \frac{ C_L} { {H_{L(0)}}^2 } </math><ref name="BB1991" />
+
'''Calculate <math> H_{L(0)}:</math>'''
 +
*SEGREGATED: <math> H_{L(0)} = 0.98 \frac{ {C_L}^{0.4846} } { {N_{FR}}^{0.0868}} </math><ref name="BB1991" />
 +
*INTERMITTENT: <math> H_{L(0)} = 0.845 \frac{ {C_L}^{0.5351} } { {N_{FR}}^{0.0173}}</math><ref name="BB1991" />
 +
*DISTRIBUTED: <math> H_{L(0)} = 1.065\frac{ {C_L}^{0.5824} } { {N_{FR}}^{0.0609}}</math><ref name="BB1991" />
  
== Discussion  ==
+
:with the constraint <math> H_L \ge C_L</math><ref name="BB1991" />
  
Why [[Hagedorn and Brown correlation| Hagedorn and Brown]]?
 
  
{{Quote| text = One of the consistently best correlations ... | source = Michael Economides et al<ref name=Economides />}}
+
:<math> \psi = 1 + C\ (sin(1.8\ \theta) - 0.333\ (sin(1.8\ \theta))^3)</math><ref name="BB1991" />
  
== Flow Diagram ==
+
:<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= BB1991/>
  
[[File: HB Block Diagram.png|400px|HB Block Diagram]]
+
'''C Uphill:'''
 +
*SEGREGATED: <math> C = (1-C_L)\ ln( 0.011 \times {N_{LV}}^{3.539}\times {C_L}^{-3.768}\times {F_{FR}}^{-1.614})</math><ref name="BB1991" />
 +
*INTERMITTENT: <math> C = (1-C_L)\ ln( 2.96\times {N_{LV}}^{-0.4473}\times {C_L}^{0.305}\times {F_{FR}}^{0.0978})</math><ref name="BB1991" />
 +
*DISTRIBUTED: <math> C=0</math><ref name="BB1991" />
  
== Workflow  H<sub>L</sub> ==
+
'''C Downhill:'''
 +
*ALL: <math> C = (1-C_L)\ ln( 4.7\times {N_{LV}}^{0.1244}\times {C_L}^{-0.3692}\times {F_{FR}}^{-0.5056})</math><ref name="BB1991" />
  
:<math> M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR</math><ref name="HB" />
+
:with the restriction <math> C \ge 0 </math><ref name="BB1991" />
  
:<math> \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}</math><ref name= Lyons/>
+
'''Finally:'''
  
:<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/>
+
*SEGREGATED, INTERMITTENT, DISTRIBUTED:
  
:<math> \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}</math><ref name= Lyons/>
+
:<math> H_L = H_{L(0)} \times \psi </math><ref name="BB1991" />
  
:<math> \sigma_L = \sigma_o \frac{1}{1 + WOR} + \sigma_w \frac{WOR}{1 + WOR}</math><ref name= Lyons/>
+
*TRANSITION:  
  
:<math> N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}</math><ref name= HB/>
+
:<math> H_L = A \times H_{L(segregated)} + (1-A) \times {H_{L(intermittent)}} </math><ref name="BB1991" />
  
:<math> CN_L = 0.061\ N_L^3 - 0.0929\ N_L^2 + 0.0505\ N_L + 0.0019 </math><ref name= Economides/>
+
where:
 
+
:<math> A = \frac{L_3-N_{FR}}{L_3-L_2}</math><ref name="BB1991" />
:<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/>
 
 
 
:<math> v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math><ref name= Lyons/>
 
 
 
:<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>
 
 
 
:<math> N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>
 
 
 
:<math> N_{D} = 120.872\ D \sqrt{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>
 
 
 
:<math> H = \frac{N_{LV}}{N_{GV}^{0.575}}\  \left ( \frac{p}{14.7} \right )^{0.1} \frac{CN_L}{N_D} </math><ref name= Economides/>
 
 
 
:<math> \frac{H_L}{\psi} = \sqrt{\frac{0.0047+1123.32 H + 729489.64H^2}{1+1097.1566 H + 722153.97 H^2}} </math><ref name= Trina/>
 
 
 
:<math> B = \frac{N_{GV} N_{LV}^{0.38}}{N_{D}^{2.14}} </math><ref name= Economides/>
 
 
 
:<math> \psi = \begin{cases}
 
27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B \le 0.025 \\
 
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\
 
2.5714 B +1.5962, & \mbox{if }B > 0.055
 
\end{cases} </math><ref name= Trina/>
 
 
 
:<math> H_L = \frac{H_L}{\psi} \times \psi</math><ref name= HB/>
 
  
 
== Modifications  ==
 
== Modifications  ==
  
1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup H<sub>L</sub> less than the no-slip holdup <ref name = Economides/>.
+
1. Force approach gas at low C<sub>L</sub>. If C<sub>L</sub><0.001 Then f'=f.  
  
2. Use the [[Griffith correlation]] to define the bubble flow regime<ref name = Economides/> and calculate H<sub>L</sub>.
+
2. Force approach to single phase fluid. If H<sub>L</sub>>1 Then H<sub>L</sub>=1.  
  
3. Use [[WCUT| watercut]] instead of [[WOR]] to account for the watercut = 100%.
+
3. Use calculated water density instead of the constant value of 62.4 lbm/ft3.
  
 
== Nomenclature  ==
 
== Nomenclature  ==
  
 +
:<math> A </math> = correlation variable, dimensionless
 
:<math> A_p </math> = flow area, ft2
 
:<math> A_p </math> = flow area, ft2
:<math> B </math> = correlation group, dimensionless
 
 
:<math> B </math> = formation factor, bbl/stb
 
:<math> B </math> = formation factor, bbl/stb
:<math> C </math> = coefficient for liquid viscosity number, dimensionless
+
:<math> C </math> = correlation variable, dimensionless
 +
:<math> C_L </math> = non-slip liquid holdup factor, dimensionless
 
:<math> D </math> = pipe diameter, ft
 
:<math> D </math> = pipe diameter, ft
 +
:<math> G </math> = total flux weight, lb<sub>m</sub>/ft<sup>2</sup>/sec
 
:<math> h </math> = depth, ft
 
:<math> h </math> = depth, ft
:<math> H </math> = correlation group, dimensionless
 
 
:<math> H_L </math> = liquid holdup factor, dimensionless
 
:<math> H_L </math> = liquid holdup factor, dimensionless
 +
:<math> H_{L(0)} </math> = liquid holdup factor when flow is horizontal, dimensionless
 
:<math> f </math> = friction factor, dimensionless
 
:<math> f </math> = friction factor, dimensionless
 +
:<math> f' </math> = corrected friction factor, dimensionless
 
:<math> GLR </math> = gas-liquid ratio, scf/bbl
 
:<math> GLR </math> = gas-liquid ratio, scf/bbl
:<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl
+
:<math> L_1, L_2, L_3, L_4 </math> = correlation variables, dimensionless
:<math> N_D </math> = pipe diameter number, dimensionless
+
:<math> N_FR </math> = Froude number, dimensionless
:<math> N_GV </math> = gas velocity number, dimensionless
 
:<math> N_L </math> = liquid viscosity number, dimensionless
 
 
:<math> N_LV </math> = liquid velocity number, dimensionless
 
:<math> N_LV </math> = liquid velocity number, dimensionless
 
:<math> p </math> = pressure, psia
 
:<math> p </math> = pressure, psia
 
:<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>
 
:<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>
:<math> q </math> = total liquid production rate, bbl/d
+
:<math> q </math> = flow rate, bbl/d - liquid, scf/d - gas
 
:<math> Re </math> = Reynolds number, dimensionless
 
:<math> Re </math> = Reynolds number, dimensionless
 
:<math> R_s </math> = solution gas-oil ratio, scf/stb
 
:<math> R_s </math> = solution gas-oil ratio, scf/stb
 +
:<math> S </math> = correlation variable, dimensionless
 
:<math> SG </math> = specific gravity, dimensionless
 
:<math> SG </math> = specific gravity, dimensionless
 
:<math> T </math> = temperature, °R or °K, follow the subscript
 
:<math> T </math> = temperature, °R or °K, follow the subscript
 
:<math> v </math> = velocity, ft/sec
 
:<math> v </math> = velocity, ft/sec
:<math> WOR </math> = water-oil ratio, bbl/bbl
+
:<math> WCUT </math> = watercut, fraction
 +
:<math> y </math> = correlation variable, dimensionless
 
:<math> z </math> = gas compressibility factor, dimensionless
 
:<math> z </math> = gas compressibility factor, dimensionless
  
Line 165: Line 159:
 
:<math> \mu </math> = viscosity, cp
 
:<math> \mu </math> = viscosity, cp
 
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>
:<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>2</sup>
+
:<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
:<math> \psi </math> = secondary correlation factor, dimensionless
+
:<math> \psi </math> = inclination correction factor, dimensionless
 +
:<math> \theta </math> = inclination angle, ° from horizontal
  
 
===Subscripts===
 
===Subscripts===
Line 175: Line 170:
 
L = liquid<BR/>
 
L = liquid<BR/>
 
m = gas/liquid mixture<BR/>
 
m = gas/liquid mixture<BR/>
 +
ns = non-slip<BR/>
 
o = oil<BR/>
 
o = oil<BR/>
 
R = °R<BR/>
 
R = °R<BR/>
Line 199: Line 195:
 
}}</ref>
 
}}</ref>
  
<ref name=Economides>{{cite book
+
<ref name=BB1991>{{cite book
  |last1= Economides |first1=M.J.
+
  |last1= Brill |first1=J. P.
  |last2= Hill |first2=A.D.
+
  |last2=Beggs|first2=H. D.
|last3= Economides |first3=C.E.
+
  |title=Two-Phase Flow In Pipes
|last4= Zhu |first4=D.
+
  |edition=6
  |title=Petroleum Production Systems
+
  |date=1991
  |edition=2
+
  |publisher=U. of Tulsa Tulsa
  |date=2013
+
  |place=Oklahoma
  |publisher=Prentice Hall
+
  |url=https://www.scribd.com/document/130564301/Twophase-Flow-in-Pipes-Beggs-Amp-Brill
  |place=Westford, Massachusetts
+
|url-access=subscription
  |isbn=978-0-13-703158-0
 
 
}}</ref>
 
}}</ref>
  
Line 245: Line 240:
 
  |place=Houston, TX
 
  |place=Houston, TX
 
  |isbn=0-88415-643-5
 
  |isbn=0-88415-643-5
}}</ref>
 
 
<ref name= Trina>{{cite thesis
 
|last= Trina |first=S.
 
|title=An integrated horizontal and vertical flow simulation with application to wax precipitation
 
|date= 2010
 
|type=Master of Engineering Thesis
 
|publisher=Memorial University of Newfoundland
 
|place= Canada
 
 
}}</ref>
 
}}</ref>
  
Line 259: Line 245:
  
 
[[Category:pengtools]]
 
[[Category:pengtools]]
[[Category:PQplot]]
+
[[Category:sPipe]]
 +
 
 +
 
 +
{{#seo:
 +
|title=Beggs and Brill correlation
 +
|titlemode= replace
 +
|keywords=brill wiki, Beggs and Brill, correlation, equation, pipe pressure drop, pipeline sizing, flow rate, fluids flow, Reynolds number, liquid hold up
 +
|description=Beggs and Brill correlation used in pressure drop pipe calculator for pipeline sizing
 +
}}

Latest revision as of 18:10, 3 November 2018

Brief

Beggs and Brill is an empirical two-phase flow correlation published in 1972 [1].

It distinguish between 4 flow regimes.

Beggs and Brill is the default VLP correlation in sPipe.

Beggs and Brill in sPipe Vs GAP

Math & Physics

Fluid flow energy balance

 -144 \frac{\Delta p}{\Delta z} = \frac{sin(\theta)\ \bar \rho_m + \frac{f'\ G_m\ v_m}{2\ g_c\ D}}{1- \bar \rho_m\ \frac{v_m\ v_{SG}}{g_c\ \frac{p}{144}}}[1]

where

 \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)[1]

Friction factor

No slip Reynolds two phase number:

 Re = 1488 \times \frac {\rho_{m,ns} v_m D} { \mu_L\ C_L + \mu_g\ (1-C_L) } [2]

Colebrook–White [3] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[4]

Corrected two phase friction factor:

 f' = f \times  e^S[2]

where

 S = \frac{ ln(y)}{ -0.0523 + 3.182\ ln(y) - 0.8725\ ln(y)^{2} + 0.01853\ ln(y)^{4}}[2]

and

 y = \frac{ C_L} { {H_L}^2 } [2]

with constraint:

 S = ln (2.2\ y - 1.2), when\ 1 \le y \le 1.2 [2]

Discussion

Why Beggs and Brill?

The best correlation for the horizontal flow.
— pengtools.com

Flow Diagram

HB Block Diagram

Workflow HL

 \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} (1-WCUT) + \frac{62.4\ SG_w}{B_w}\ WCUT[5]
 \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} [5]
 \mu_L = \mu_o (1-WCUT) + \mu_w\ WCUT[5]
 \sigma_L = \sigma_o (1-WCUT) + \sigma_w\ WCUT[5]
 v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o (1-WCUT) + B_w\ WCUT \right )[5]
 v_{SG} = \frac{q_g}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}[5]
 G_m = \rho_L \times v_{SL} + \rho_g \times  v_{SG}[5]
 v_m = v_{SL} +  v_{SG}
 C_L = \frac{v_{SL}}{v_m}
 L_1 = 316\ {C_L}^{0.302}[2]
 L_2 = 0.0009252\ {C_L}^{-2.4684}[2]
 L_3 = 0.1\ {C_L}^{-1.4516}[2]
 L_4 = 0.5\ {C_L}^{-6.738}[2]
 N_{FR} = \frac{{v_m}^2}{g_c\ D}[1]

Determine the flow pattern:

  • SEGREGATED:  (C_L < 0.01\ \&\ N_{FR}< L_1)\ or\ (C_L\ge0.01\ \&\ N_{FR}<L_2)[2]
  • TRANSITION:  C_L \ge 0.01\ \&\ L_2 \le N_{FR} \le L_3[2]
  • INTERMITTENT:  (0.01 \le C_L <0.4\ \&\  L_3<N_{FR}\le L_1)\ or\ ( C_L\ge0.4\ \&\ L_3<N_{FR} \le L_4)[2]
  • DISTRIBUTED:  (C_L < 0.4\ \&\ N_{FR} \ge L_1)\ or\ (C_L\ge0.4\ \&\ N_{FR}>L_4)[2]

Calculate  H_{L(0)}:

  • SEGREGATED:  H_{L(0)} = 0.98 \frac{ {C_L}^{0.4846} } { {N_{FR}}^{0.0868}} [2]
  • INTERMITTENT:  H_{L(0)} = 0.845 \frac{ {C_L}^{0.5351} } { {N_{FR}}^{0.0173}}[2]
  • DISTRIBUTED:  H_{L(0)} = 1.065\frac{ {C_L}^{0.5824} } { {N_{FR}}^{0.0609}}[2]
with the constraint  H_L \ge C_L[2]


 \psi = 1 + C\ (sin(1.8\ \theta) - 0.333\ (sin(1.8\ \theta))^3)[2]
 N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [2]

C Uphill:

  • SEGREGATED:  C = (1-C_L)\ ln( 0.011 \times {N_{LV}}^{3.539}\times {C_L}^{-3.768}\times {F_{FR}}^{-1.614})[2]
  • INTERMITTENT:  C = (1-C_L)\ ln( 2.96\times {N_{LV}}^{-0.4473}\times {C_L}^{0.305}\times {F_{FR}}^{0.0978})[2]
  • DISTRIBUTED:  C=0[2]

C Downhill:

with the restriction  C \ge 0 [2]

Finally:

  • SEGREGATED, INTERMITTENT, DISTRIBUTED:
 H_L = H_{L(0)} \times \psi [2]
  • TRANSITION:
 H_L = A \times H_{L(segregated)} + (1-A) \times {H_{L(intermittent)}} [2]

where:

 A = \frac{L_3-N_{FR}}{L_3-L_2}[2]

Modifications

1. Force approach gas at low CL. If CL<0.001 Then f'=f.

2. Force approach to single phase fluid. If HL>1 Then HL=1.

3. Use calculated water density instead of the constant value of 62.4 lbm/ft3.

Nomenclature

 A = correlation variable, dimensionless
 A_p = flow area, ft2
 B = formation factor, bbl/stb
 C = correlation variable, dimensionless
 C_L = non-slip liquid holdup factor, dimensionless
 D = pipe diameter, ft
 G = total flux weight, lbm/ft2/sec
 h = depth, ft
 H_L = liquid holdup factor, dimensionless
 H_{L(0)} = liquid holdup factor when flow is horizontal, dimensionless
 f = friction factor, dimensionless
 f' = corrected friction factor, dimensionless
 GLR = gas-liquid ratio, scf/bbl
 L_1, L_2, L_3, L_4 = correlation variables, dimensionless
 N_FR = Froude number, dimensionless
 N_LV = liquid velocity number, dimensionless
 p = pressure, psia
 q_c = conversion constant equal to 32.174049, lbmft / lbfsec2
 q = flow rate, bbl/d - liquid, scf/d - gas
 Re = Reynolds number, dimensionless
 R_s = solution gas-oil ratio, scf/stb
 S = correlation variable, dimensionless
 SG = specific gravity, dimensionless
 T = temperature, °R or °K, follow the subscript
 v = velocity, ft/sec
 WCUT = watercut, fraction
 y = correlation variable, dimensionless
 z = gas compressibility factor, dimensionless

Greek symbols

 \varepsilon = absolute roughness, ft
 \mu = viscosity, cp
 \rho = density, lbm/ft3
 \bar \rho = integrated average density at flowing conditions, lbm/ft3
 \sigma = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 \psi = inclination correction factor, dimensionless
 \theta = inclination angle, ° from horizontal

Subscripts

g = gas
K = °K
L = liquid
m = gas/liquid mixture
ns = non-slip
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water

References

  1. 1.0 1.1 1.2 1.3 Beggs, H. D.; Brill, J. P. (May 1973). "A Study of Two-Phase Flow in Inclined Pipes"Paid subscription required. Journal of Petroleum Technology. AIME. 255 (SPE-4007-PA). 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 Brill, J. P.; Beggs, H. D. (1991). Two-Phase Flow In PipesPaid subscription required (6 ed.). Oklahoma: U. of Tulsa Tulsa. 
  3. Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  4. Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.