Difference between revisions of "Hagedorn and Brown correlation"
From wiki.pengtools.com
(→Nomenclature) |
(→Nomenclature) |
||
Line 66: | Line 66: | ||
:<math> \psi = \begin{cases} | :<math> \psi = \begin{cases} | ||
− | 27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999, & \mbox{if }B\mbox{ | + | 27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999, & \mbox{if }B\mbox{ = 0.025} \\ |
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B\mbox{ 0.025} \\ | -533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B\mbox{ 0.025} \\ | ||
2.5714 B +1.5962, & \mbox{if }B\mbox{ 0.055} | 2.5714 B +1.5962, & \mbox{if }B\mbox{ 0.055} |
Revision as of 13:14, 21 March 2017
Contents
Brief
Hagedorn and Brown is an empirical two-phase flow correlation published in 1965.
It doesn't distinguish between the flow regimes.
The heart of the Hagedorn and Brown method is a correlation for the liquid holdup :.
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
Colebrook–White equation for the Darcy's friction factor:
Reynolds two phase number:
Discussion
Block Diagram
Workflow
- Failed to parse (PNG conversion failed; check for correct installation of latex and dvipng (or dvips + gs + convert)): \psi = \begin{cases} 27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999, & \mbox{if }B\mbox{ 0.025} \\ -533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B\mbox{ 0.025} 2.5714 B +1.5962, & \mbox{if }B\mbox{ 0.055} \end{cases}