Difference between revisions of "Hagedorn and Brown correlation"
From wiki.pengtools.com
(→Workflow) |
(→Workflow) |
||
Line 29: | Line 29: | ||
:<math> \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}</math> | :<math> \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}</math> | ||
− | :<math> \ | + | :<math> \sigma = \sigma_o \frac{1}{1 + WOR} + \sigma_w \frac{WOR}{1 + WOR}</math> |
:<math> N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}</math> | :<math> N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}</math> | ||
Line 39: | Line 39: | ||
:<math> v_{SG} </math> | :<math> v_{SG} </math> | ||
− | :<math> N_{LV} </math> | + | :<math> N_{LV} = 1.938 v_{SL} \sqrt[4]{\frac{\rho_L}{\sigma} </math> |
− | :<math> N_{GV} </math> | + | :<math> N_{GV} = 1.938 v_{SG} \sqrt[4]{\frac{\rho_L}{\sigma} </math> |
:<math> N_D </math> | :<math> N_D </math> |
Revision as of 16:28, 20 March 2017
Brief
Hagedorn and Brown is an empirical two-phase flow correlation published in 1965.
It doesn't distinguish between the flow regimes.
The heart of the Hagedorn and Brown method is a correlation for the liquid holdup :.
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
Colebrook–White equation for the Darcy's friction factor:
Reynolds two phase number:
Workflow
- Failed to parse (syntax error): N_{LV} = 1.938 v_{SL} \sqrt[4]{\frac{\rho_L}{\sigma}
- Failed to parse (syntax error): N_{GV} = 1.938 v_{SG} \sqrt[4]{\frac{\rho_L}{\sigma}
corr p1
corr p2