Difference between revisions of "Liquid loading"

From wiki.pengtools.com
Jump to: navigation, search
(Nomenclature)
Line 12: Line 12:
  
 
=== Nomenclature ===
 
=== Nomenclature ===
:<math> v_g </math> = gas velocity, ft/sec
+
:<math> A </math> = flow area, ft^2
 +
:<math> q_g </math> = gas rate, MMscf/d
 +
:<math> P </math> = flowing pressure, psia
 +
:<math> \rho_g </math> = gas density, lbm/ft3
 +
:<math> \rho_L </math> = liquid density, lbm/ft3
 
:<math> \sigma </math> = surface tension, dyne/cm
 
:<math> \sigma </math> = surface tension, dyne/cm
:<math> \rho_L </math> = liquid density, lbm/ft3
 
:<math> \rho_g </math> = gas density, lbm/ft3
 
:<math> P </math> = flowing pressure, psia
 
:<math> q_g </math> = gas rate, MMscf/d
 
:<math> A </math> = flow area, ft^2
 
 
:<math> T </math> = flowing temperature, °R
 
:<math> T </math> = flowing temperature, °R
 +
:<math> v_g </math> = gas velocity, ft/sec
 
:<math> z </math> = gas compressibility factor at flowing P & T
 
:<math> z </math> = gas compressibility factor at flowing P & T
  

Revision as of 13:02, 15 March 2017

Brief

Liquid loading is a phemonenon when the gas phase does't provide sufficient transport energy to lift the liquids out of the well.

Math & Physics

The minimum gas velocity to remove the liquid equation:

 v_g = 1.593 \sigma^{1/4} \frac{({\rho_L-\rho_g})^{1/4}}{\rho_g^{1/2}}

The minimum gas rate to remove the liquid equation:

 q_g = 3.06 \frac{P v_g A}{T z}

Nomenclature

 A = flow area, ft^2
 q_g = gas rate, MMscf/d
 P = flowing pressure, psia
 \rho_g = gas density, lbm/ft3
 \rho_L = liquid density, lbm/ft3
 \sigma = surface tension, dyne/cm
 T = flowing temperature, °R
 v_g = gas velocity, ft/sec
 z = gas compressibility factor at flowing P & T

References

Turner, R. G., Hubbard, M. G., and Dukler, A. E. (1969) “Analysis and Prediction of Minimum Flow Rate for the Continuous Removal of Liquids from Gas Wells,” Journal of Petroleum Technology, Nov. 1969. pp. 1475–1482.