Difference between revisions of "3 Phase IPR"

From wiki.pengtools.com
Jump to: navigation, search
(Math and Physics)
(Nomenclature)
Line 40: Line 40:
  
 
== Nomenclature  ==
 
== Nomenclature  ==
:<math> A, B, C, D, tan(\beta), CD, CG </math> = calculation variables
+
:<math> VF </math> = volume factor, bbl/stb
:<math> F_o </math> = oil fraction, fraction
+
:<math> WCUT</math> = water cut, fraction
:<math> F_w </math> = water fraction, fraction
+
:<math> B</math> = volume factor, dimensionless
:<math> J </math> = productivity index, stb/d/psia
+
:<math> GLR</math> = gas liquid ratio, ? scf / stb
:<math> P </math> = pressure, psia
+
:<math> R</math> = solution gas ration, scf / stb
:<math> q </math> = flowing rate, stb/d
+
:<math> V </math> = total volume of produced fluid rate (inducing gas), bbl/d
 +
:<math> q </math> = flowing rate, stb/d  
 +
 
  
 
===Subscripts===
 
===Subscripts===
:b = at bubble point<BR/>
+
:w = water<BR/>
:max = maximum<BR/>
 
 
:o = oil<BR/>
 
:o = oil<BR/>
:r = reservoir<BR/>
+
:sc = standard conditions
 
:t = total<BR/>
 
:t = total<BR/>
:wf = well flowing bottomhole pressure<BR/>
 
:wfG = well flowing bottomhole pressure at point G<BR/>
 
  
 
== References ==
 
== References ==

Revision as of 07:38, 17 April 2019

Three-phase Inflow Performance Relationship

3 Phase IPR Curve [1]

3 Phase IPR is an IPR curve calculated on the basis of total barrels of produced fluid, including gas.

3 Phase IPR curve is used in Pump Design software for pump sizing.

Math and Physics

The volume of 1 stb of liquid plus associated gas at any pressure and temperature is given by[1]:

 VF=WCUT\ B_w + (1-WCUT)\ B_o + (GLR\ - (1-WCUT)R_s - WCUT\ R_{sw})B_g [1]


The total volume of produced fluid rate (liquid plus gas) at any conditions of pressure and temperature:

 V=q_{t_{sc}} \times VF [1]

 q_{t_{sc}} is calculated as usual using:

3 Phase IPR calculation example

Following the well #1 example given by Brown[1]on Figure 5.8, page 191:

Given:

P_r = 2550 psi
P_b = 2100 psi

Test data:

P_{wf} = 2300 psi
q_t = 500 b/d

Calculate:

Determine the 3 Phase IPR curves for Fw=0, 0.25, 0.5, 0.75, and 1.

Solution:

The problem was run through PQplot software for different values of watercut.

Result 3 Phase IPR curves are shown on Fig.1. Points indicate results obtained by Brown [1].

The PQplot model from this example is available online by the following link: 3 Phase IPR calculation example

Nomenclature

 VF = volume factor, bbl/stb
 WCUT = water cut, fraction
 B = volume factor, dimensionless
 GLR = gas liquid ratio, ? scf / stb
 R = solution gas ration, scf / stb
 V = total volume of produced fluid rate (inducing gas), bbl/d
 q = flowing rate, stb/d


Subscripts

w = water
o = oil
sc = standard conditions
t = total

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Brown, Kermit (1984). The Technology of Artificial Lift Methods. Volume 4. Production Optimization of Oil and Gas Wells by Nodal System Analysis. Tulsa, Oklahoma: PennWellBookss. 

See also

IPR
Vogel's IPR
Composite IPR
Darcy's law