Difference between revisions of "4/π stimulated well potential"
From wiki.pengtools.com
(→Nomenclature) |
(→Math & Physics) |
||
Line 14: | Line 14: | ||
From [[Darcy's law]]: | From [[Darcy's law]]: | ||
− | :<math>\frac{q}{2}=\frac{kA}{ | + | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math> |
:<math> A =y_e*h</math> | :<math> A =y_e*h</math> | ||
− | :<math>dP=\frac{q | + | :<math>dP=\frac{q \mu}{2ky_eh} dx</math> |
− | Integration gives: <math>P-P_{wf}=\frac{q | + | Integration gives: <math>P-P_{wf}=\frac{q \mu}{2ky_eh} x</math> |
Since average pressure is: <math>\bar P = \frac{\int P dx}{\int dx}</math> | Since average pressure is: <math>\bar P = \frac{\int P dx}{\int dx}</math> | ||
− | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q | + | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{2ky_eh} x + P_{wf} \right ) dx}{\int dx} = \left. \frac{q \mu}{2ky_eh} \frac{x}{2} \right|_{x=0}^{x=x_e/2} + P_{wf} = \frac{q \mu x_e}{8ky_eh} + P_{wf}</math> |
− | :<math>J_D=\frac{q | + | :<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{8ky_eh}{q \mu x_e} = \frac{4y_e}{\pi x_e}=\frac{4}{\pi}</math> |
==See also== | ==See also== |
Revision as of 11:28, 10 September 2018
Brief
4/π is the maximum possible stimulation potential for steady state linear flow in a square well spacing.
Math & Physics
Steady state flow boundary conditions:
From Darcy's law:
Integration gives:
Since average pressure is:
See also
optiFrac
fracDesign
Production Potential
Nomenclature
- = cross-sectional area, cm2
- = thickness
- = permeability
- = length
- = drinage area length
- = drinage area width
- = pressure
- = initial pressure
- = average pressure
- = flow rate
Greek symbols
- = oil viscosity